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The key equations of the sympleetic Faddeev-Jackiw formalism are written in 
an alternative way so that the inverse of the symplectic matrix is easily found. 
The nonlinear sigma model including the Hopf term in the action is treated in 
the framework of this quantization method. It is shown how the complete dynamics 
of the system is described by means of the generalized Faddeev-Jackiw 
quantum brackets. 

1. INTRODUCTION 

From the theoretical point of view, as well as phenomenologically, 
anyons are important for several reasons. Anyonic excitation can be described 
by means of different theoretical approaches; see, for instance, Berezin and 
Marinov (1977), Leinass and Myrheim (1977), Goldin et  al. (1980, 1981), 
Wilczek (1982; for a recent review see Wilczek, 1991), Wilczek and Zee 
(1983), Laughlin (1983), the articles in Chern et  al. (1991), Wu and Zee 
(1984), Bowick et  al. (1986), Dzyaloshinskii e t  al. (1988), Polyakov (1988), 
Plyushchay (1992), Hagen (1984, 1985), Arovas et  al. (1985), the review by 
Jackiw (1990), Kogan (1991), Kogan and Semenoff (1992), Stern (1991), 
Cabo et  al. (1992), Cortes et  al. (1992, 1994), Chou et  al. (1993), Chaichian 
et  al. (1993), Fr61ich and Marchetti (1988), Hlousek and Spector (1990), and 
Foussats et  al. (1996a, b). In this paper we do not consider these aspects 
because anyons and their properties have already been extensively discussed 
in the literature. 
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Among the different approaches, an interesting proposal is to study 
supersymmetric anyon theories in terms of the coupling of a conserved current 
superfield to a nondynamical gauge superfield with Chern-Simons term. In 
this framework it can be seen how the anyon-anyon interaction is determined 
only by supersymmetry requirements. In other words, in a supersymmetric 
theory, anyon species must interact in such a way that supersymmetry is 
preserved. 

It is also known that in (2 + 1) dimensions the topological solitons of 
the bosonic 0(3)  nonlinear sigma model can be turned into anyons by 
including the Hopf term in the action. At the classical level, the supersymmet- 
ric generalization of this approach was developed in Hlousek and Spector 
(1990). For instance, following this approach, it is shown how apparent 
paradoxes appearing in supersymmetric anyon theories are solved by analyz- 
ing symmetry breaking, both supersymmetry and gauge symmetry breaking. 

In the framework of the usual Dirac formalism for constrained Hamilto- 
nian systems (Dirac, 1950, 1964), the study of the constraint structure of the 
bosonic 0(3)  nonlinear sigma model with Hopf term requires long alge- 
braic manipulations. 

The purpose of the present work is to analyze this gauge model in 
the symplectic Faddeev-Jackiw quantum picture, leaving the study of the 
supersymmetfic generalization of the model for a forthcoming paper. 

An alternative way to treat constrained systems was proposed by Faddeev 
and Jackiw (FJ) (1988), which in some cases is more economical than Dirac's 
method. This happens because in the FJ construction there is in general a 
minor number of constraints. 

The FJ symplectic formalism has been carefully studied (Costa and 
Girotti, 1988; Govaerts, 1990; Barcelos-Neto and Srivastava, 1991; Kulshr- 
eshtha and Muller-Kirsten, 1991; Barcelos-Neto and Wotzasek, 1992a, b, 
1993; Horta-Barreira and Wotzasek, 1992; Montani and Wotzasek, 1993a, b), 
and a supersymmetric extension of this method to include Grassmann dynami- 
cal variables can be found in Govaerts (1990), but has not often been used 
in supersymmetric systems. 

Recently, we have written the key equation of the supersymmetric exten- 
sion of the symplectic FJ formalism in an alternative way (Foussats and 
Zandron, 1997). This allowed us to obtain general equations from which the 
generalized FJ commutators can be easily computed. 

In Section 2 we briefly recall the main equations of the symplectic 
quantization formalism that are used in the quantization of the constrained 
nonlinear sigma model with Hopf current. In Section 3, we summarize the 
principal characteristics of the model, and then explicity evaluate the general- 
ized FJ commutators. 
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2. AN ALTERNATIVE WAY OF WRITING THE KEY 
EQUATIONS IN THE SYMPLECTIC 
FADDEEV-JACKIW FORMALISM 

In order to compute the generalized commutators, one of the crucial 
points in the FJ method is to study how difficult is the invertibility of the 
symplectic matrix. 

In this section the main results of the symplectic formalism are reviewed 
by writing the key equations in a simple language that easily allows us to 
compute the inverse of the symplectic matrix. 

The FJ symplectic quantization method is based on first-order Lagrangi- 
ans. This is not a serious restriction because any system can be written in a 
first-order formalism by enlarging the configuration space by introducing 
proper auxiliary fields. As can be shown, the generalized brackets obtained 
from the equation of motion are equal to those obtained by means of the 
Dirac formalism, producing the same dynamical results. In the FJ symplectic 
formalism the classification of constrained or unconstrained systems is related 
to the singular or nonsingular behavior of the fundamental symplectic two- 
form. The classification of constraints as primary, secondary, and so on, or 
as first-class or second-class constraints has no meaning. Once the symplectic 
algorithm is finished, the only remaining constraints are those associated 
with gauge symmetries. So, in this method there is in general a minor number 
of constraints compared with the number of constraints generated by the 
Dirac algorithm. Hence, we can expect that the algebraic manipulations 
needed in the treatment of the constrained systems could be shortened. 

The most general action containing first-order time derivatives is defined 
by a Lagrangian density written in terms of two arbitrary functionals Ka(q~ A) 
and  V(~0A), 

L(~oa, r = CAK~(~a) - V(~  A) (2.1) 

The functionals KA(q0 a) are components of the canonical one-form K(q0) 
= Ka(q~)dq~ A, and the functional V(q0) is the symplectic potential. The general 
compound index A runs in the different ranges of the complete set of variables. 
The set of field dynamical variables q~a is given by the original set of fields 
plus a set of auxiliary fields necessary to bring the system into its first-order 
form (2.1) and this set defines the extended configuration space. 

The Euler-Lagrange equations of motion obtained from (2.1) are 

E MABr B -- 0_..VV = 0 (2.2) 
B ~ oA 

The elements of the symplectic matrix MAB(q~) are components of the 
sympletic two-form M(q~) = dK(q~). The exterior derivative of the canonical 
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one-form K(q~) is written as the generalized curl constructed with functional 
derivatives and so the components are given by 

~KB(y) ~KAx) 
Man(x, y) = 8q~a(x ) 8q~n(y ) (2.3) 

When the symplectic matrix Man is nonsingular, it defines the symplectic 
two-form characterizing the dynamical system described by (2.1). From the 
equations of motion (2.2) we obtain 

~a = (MAB)-I OV 
( 2 . 4 )  b~p n 

As the symplectic potential is just the Hamiltonian of the system, the 
equation (2.4) is written 

~V 
r ~. [~A, V] ~--- [ r  ~B] 0~ n (2.5) 

where [cp a, ~pn] = (MAn)-l are the generalized brackets of the FJ symplectic 
formalism. The elements (MAn) -l of the inverse of the symplectic matrix 
Man correspond to the graded Dirac brackets of  the theory. Transition to the 
quantum theory is realized as usual by replacing classical fields by quantum 
field operators acting on some Hilbert space. Therefore, in this case the FJ 
and the Dime methods are equivalent. 

On the other hand, in gauge-invariant field theories, besides the true 
dynamical degrees of  freedom, there are also gauge degrees offreedom, and 
so first-class constraints exist and the matrix Man is singular. That is the case 
of Lagrangian densities describing gauge theories. 

In the FJ formalism the constraints appear as algebraic relations and 
they are necessary to maintain the consistency of the field equations of  
motion. In such a case, there exist m (m < n) left (or right) zero-modes v{~) 
(or = 1 . . . . .  m) of  the matrix MAn, where each v{,~) is a column vector with 
n + m entries v~,~). So the zero-modes satisfy the equation 

A = V(a)MAB 0 (2.6) 
A 

where the compound indices A = (i, or) and B = (j, [3) run in the ranges 
i , j =  1 . . . . .  n and or, [3 = 1 . . . . .  m. 

Consequently, from the equations of  motion (2.2) we can write 

f ~ I d y V ( y , t ) = O  (2.7) 1)(~} = dx v~)(x, t) ~q~a(x ' t---~) 

The quantities [l{,~) are the constraints in the FJ symplectic formalism, and 
they are introduced in the Lagrangian by using suitable Lagrange multipliers: 



Nonlinear Sigma Model in the Faddeev-Jackiw Quantization Formalism 2927 

L = (piKi(q~) - A(")fI(~) - V ( ~ )  (2.8) 

In equation (2.8) we have assumed that ~pi(x) represents any field belong- 
ing to the symplectic set. Therefore, the submatrix Mq of the matrix (2.3) 
is nonsingular. 

At this point one can run the symplectic algorithm once again, enlarging 
the configuration space by considering the set of variables (q~i, ~(~)). This is 
done by redefining the A <~) variables as 

A (~) = -~(~) (2.9) 

Therefore, the first-iterated Lagrangian is written 

L (l) = ~iKi(q~) + ~(~)~(~) - V(l)(ho), (2.10) 

where VO)(q~) = V(q~)ia(~)=o. 
In terms of the new set of dynamical variables, the symplectic matrix 

in compact notation is written 

(2.11) 

where M o. (submatrix of MAB) represents the square nonsingular matrix con- 
structed from the original symplectic set of field variables. The notation 
81)(~>/~q~J represents a rectangular matrix. 

This iterative procedure modifies the symplectic matrix until all the 
nonorthogonal zero-modes have been eliminated. That means that the algo- 
rithm must be repeated until no new constraint is generated. As we will see, 
for gauge-invariant theories, the algorithm is not able to generate an invertible 
symplectic matrix. Therefore, to obtain the generalized brackets, gauge-fixing 
conditions can be imposed. 

Now, by writing the following general expression for the inverse of the 
symplectic matrix MAB 

( aJk(x, y) BJ~ y) ~ 
(MAB)-I(x, y) = \CfJX(X, y) GBP(x, y)] (2.12) 

it can be seen that a unique quantity (MAS) - ! exists with the property 

I dz Man(X, z)(MSC)-t(z, = 8CA~(X, Y) Y) (2.13a) 

f dz(MAB)-I(x, y) y) (2.13b) Z)MBc(Z, ~ ( x ,  
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The equations are 

I _ ~l~(z) 
dz Mij(x, z)AJk(Z, y) + ~ Cf~K(Z, y) = ~kiS(x -- y) (2.14a) 

dz go(x, z)BJP(z, y) + ~ Gf3P(z, y) = 0 (2.14b) 

I ~ , ( x )  
- dz ~ AYk(z, y) = 0 (2.14c) 

- d z ~ B J P ( z , y ) = 8 ~  (2.14d) 

After some algebra we find 

BJP(x, y) = - C PJ(y, x) 

f ~l~(z) = - dz dw(MJk)-l(x, w) ~ GI3p(z, y) (2.15) 

A iJ(x, y) = (~fJ)- l(x, y) 

8Ila(z) I 

~t(v) } 

f dz ll,,~(x, z)G~P(z, y) = 8~g(x - y) (2.17) 

where 

I 8~,(x) ~O~(z___.~) 1 l~,a(x, z) = dy dv ~ (~i)-l(y, v) ~,r (2. 8) 

Finally, the generalized brackets are given by 

[q)i(x), %(Y)] = ( ~ 0 - 1 ( x ,  y) 

-- f dzdw (f du (~k)-l(x, u) ~'~(Z.---~)~ 

• ( f  dv (M.-il)-'(z, v) ~l)'~(w---~)~ G~ y) (2.19) ~(v) } 
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Equations (2.17)--(2.19) show that the generalized FJ brackets can be 
computed only if ~,~a and ~ J  are invertible. Therefore, all algebraic manipula- 
tions are reduced to compute the matrices (~J)-~ and G '~a. 

In the next section we apply the above results to the nonlinear sigma 
model in the presence of the topological Hopf current. 

3. THE NONLINEAR SIGMA MODEL WITH HOPF TERM IN 
THE FADDEEV-JACKIW PICTURE 

In (2 + 1) dimensions the topological solitons of the bosonic 0(3)  
nonlinear sigma model can be turned into anyons by including the Hopf 
current. This conspicuous feature renders the model interesting from the 
quantum point of view. 

The bosonic O (3) nonlinear sigma model including the topological Hopf 
current term, as a constrained system, gives rise to a singular symplectic 
matrix. As will be seen, a way to remove the singularity is to break the gauge 
symmetry in the symplectic potential by adding gauge-fixing terms. 

The Lagrangian density for this model can be written in terms of a set 
of real scalar fields dp ~ and a U(1) gauge field A~ as follows: 

1 
~ 0  = 2 0ttc~a Ottf~a _ 2~rOJ~A~ + ,ITOEP.VpAtL0vAp -I- ~k(l~b 2 - -  1) (3.1) 

where the topological Hopf current is defined by 

1 
J~ = ~ ~.lxUPEabcf~aovf~bOpf~C (3.2) 

and the non-linear constraint ~b 2 = 1 is introduced in (3.1) by using a Lagrange 
multiplier. The index a = 1, 2, 3 runs in the adjoint representation of 0(3)  
and from now on the Greek indices ix, v, p = 0, 1, 2, and the Latin indices 
i , j =  l, 2. 

From (3.1) it is easy to write the first-order Lagrangian by introducing 
as dynamical variable the canonical conjugate momentum "tra of the field ~ba, 

1 oeabcEiJf~bOi~cA j (3.3) 

In the case of dealing with the Hamiltonian Dirac method, the compo- 
nents of the canonical conjugate momentum P~ of the gauge field A~ also 
must be considered, and both components (p0, pi) are constraints. So, there are 
primary constraints on which Dirac consistency conditions must be imposed, 
increasing in this way the algebraic manipulations. 

In the Lagrangian FJ formalism no new variables appear, because the 
Lagrangian density is already of first order in the U(1) gauge field A~. The 
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initial set of symplectic variables defining the extended configuration space 
is given by the set (dpa, "rr a, A~, k), and so the starting Lagrangian density is 
written in first-order form as follows: 

~ 0  = , a f f t a  ..[_ xro~iJAjAi _ v O ( ~ a ,  ,IT a,  A~, h )  ( 3 . 4 )  

where the symplectic potential is given by 

1 1 1 1 02NaJNiAjA i V~162 'rt a, A,,, h) = ~ "ffaTi 'a - -  "~ o i e a o i ~ )  a - -  ~ O'rraNJaAj + -~ 

+ 2r ~ - r  0 - h ( ~  2 - 1) ( 3 . 5 )  

In equation (3.5), to simplify notation we have denoted 

N aj = ~abcr (3.6) 

Initially, in the case under consideration the 10 • 10 (singular) symplec- 
tic matrix (2.3) reads 

0 
0 

(3.7) 

The nonsingular 8 • 8 matrix M ~  x is constructed from the original set 
of  nonsingular field variables (~a, "W~, Ai), and is given by 

M~ = b 0 (3.8) 
0 -21r0~ U 

From the expression (3.7) it can be seen that there are two zero-modes. 
The corresponding zero-modes are given by 

V 1 = (0a, 0a, 0i, Vl, 0)  (3.9a) 

v2 = (0a, 0a, 0/, 0, v2) (3.9b) 

where Vl and v2 are arbitrary. 
The constraints are evaluated from equation (2.7) and they read 

l~l = 2"rr0(J ~ - r = 0 (3.10a) 

112 = ~b 2 - 1 = 0 (3.10b) 

The constraint (3.10a) is precisely the time component of the field 
equation for the auxiliary nonphysical U(1) field A~, and (3.10b) is none 
other than the nonlinear constraint of the sigma model. 
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Now we must carry out the first iterative procedure, and so the expression 
for the first-iterated Lagrangian is 

.~0 ..._) ~;~1 = (~aqT a + 7ro~iJAjAi + ~1~'~1 + ~2~'~2 _ V 1 (3.11) 

where V 1 is defined by 

1 1 1 1 02NaiNJaAiAj V 1 = V~ ~-- 2 qTaqTa -- 2 ~i~a~if~a -- 2 0 ' r r a g ~ A J  + -~ 

(3.12) 

The modified symplectic matrix obtained after the first iteration is com- 
pleted is again singular. As can be seen, there are two new zero-modes 
associated to this matrix and they are written in terms of two new arbitrary 
quantifies v3 and 1'4: 

u = (Oa, -2dpaV3, Oi, O, v3) (3.13a) 

Using once more the equation (2.7), we find 

1"~ 3 = 2dpa'tr a = 0 (3.14a) 

3 
I~, = -~ OMaZ a = 0 (3.14b) 

where 

M a = Eabc~ijtg~btgjd#c (3 .15)  

1 
Z a = 'It a - ~ ONaiAi (3.16) 

After some algebra we can show the following relation among constraints: 

3 
~2~'~ 4 "l- ~ ONaJZa~j~'~2 - 3"rr0J~ = 0 (3.17) 

that is, f~4 is not a new constraint. Moreover, in the soliton case j i  oc N,iZ,, 
= 0, and I~4 is proportional to ~3. 

At this stage, the theory has three constraints and the matrix ~ a  (x, y) 
is obviously singular. A new iterative step is necessary and the Lagrangian is 

~ 1  ~ ~ 2  = ~)aT~a ..[_ ,rrOeqmjAi + ~ , ~  _ V 2 (3.18) 
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where now ot = 1, 2, 3; the three constraints ll~ are given in equations 
(3.10a), (3.10b), and (3.14a), and V 2 is defined by the equation 

V 2 = Vlla =0 = V l (3.19) 

Repeating the above procedure, another one zero-mode appears that can 
be written in components 

3 _ [8~rJ ~ 10NiaOiV5" _Oiv5, Vs, 0u 5, 0 v5 --~ 0a, O [ T  f~a -- Ma 1'5, 

(3.20) 

and has a constraint associated, which can be written in terms of the old 
constraints as follows: 

j 0  
~5  = ~4 -- 3~0"7"5"~3 (3.21) 

At this stage the procedure is finished because no new constraint is found. 
As corresponding to a gauge theory, the final symplectic matrix is singular. 

As noted above, the invertibility of the matrix ~ a ,  and therefore the 
invertibility of the symplectic matrix are performed by breaking the symmetry 
in the symplectic potential. 

This can be done by means of a gauge-fixing term added to the Lagran- 
gian density. Such a term plays the role of a new constraint. The simplest 
case is to consider the gauge of divergenceless for the U(1) gauge field A~. 

Consequently, the set of constraints we must take into account is (3.10a), 
(3.10b), (3.14a), and the gauge-fixing term 

1)4 = OiAi = 0 (3.22) 

Now, by computing the matrix elements l~,a(x, y) we obtain 

1 
lIl3(X, y) = ~ Odpa(x)(Ma(x) "t- 2Nai(x)Oi)~(x - y) 

~-~14(x, y) = -V28(x - y) 

~23(x, Y) = -4dp2(x)8(x - Y) 

(3.23a) 

(3.23b) 

(3.23c) 

and the other matrix elements are all zero. 
The matrix G ~  defined in (2.17) necessary to compute the generalized 

FJ brackets is now easily found and has the form 
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Go,~(x, y) = 

o o ' / 
! 

0 4cb2 3"tr0 ~-~ 

f 0 

0 

1 
0 

4~b 2 

1 j o  1 
- ~  -3"rr0 +~ V- q 

0 0 
5(x - y) (3.24) 

o o / 

Finally, the generalized FJ brackets (2.19) in the divergenceless gauge 

(3.25a) 

(3.25b) 

(3.25c) 

(3.25d) 

(3.25e) 

(3.22) have the following expressions: 

[l~a(X), dpb(y)] = 0 

f ba fbb~e , , ,  
[~ba(X), 'trb(y)] = 5ab -- ---~--}OtX -- y) 

1 
['ITa(X), "rrb(y)] = ~-~ ( "~a (bb  - -  " f f b f ~ a ) ~ ( X  - -  y) 

[(ha(X), A~(y)] = 0 

1 
['rra(X), Aj(y)] = --~--~ r (x, y)  

1 
[Ai(x), Aj(y)]  = ~ [r - y) + (r x) - cjkO~x))d(Y)kG(x, y ) ]  (3.250 

where the functional G (x, y) defined above satisfies the differential equation 

V2G(x, y) = 5(x - y) (3.26) 

The above generalized FJ brackets correspond to the Dirac brackets of 
the model. Therefore, once the nonsingular symplectic matrix is found, the 
complete canonical information about the dynamical system is obtained. 
The symplectic matrix also contains the complete information about all the 
symmetries present in the model. 

As noted above, the transition to quantum theory is realized as usual in 
a canonical formalism by replacing classical fields by quantum field operators 
acting on some Hilbert space. 

4. CONCLUSIONS 

In summary, we have found the constraints in the bosonic O (3) nonlinear 
sigma model including the topological Hopf current term. 
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In the framework of the FJ symplectic method the generalized commuta- 
tors are found by removing the singularity in the symplectic matrix. This 
was done by adding the gauge-fixing term in the symplectic potential. 

It is clear that the zero-modes of the symplectic matrix constructed by 
this method are closely related to the generators of gauge symmetries. In this 
context the unique constraints are those associated to gauge symmetries, and 
so the role of generators of the gauge symmetries assigned to these first- 
class constraints is clear. 

The algebraic manipulations needed to find the constraints are less than 
with the Dirac procedure. 

The supersymmetric extension of the nonsigma linear model with super 
Hopf topological current is an interesting model to explain anyon physics 
by means of supersymmetry. On the other hand, the supersymmetric extension 
of the FJ formalism has not frequently been used. Therefore, a useful exercise 
would be to apply the equations given in Foussats and Zandron (1997) to 
this supersymmetric model. 
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